

RC OSCILLATOR MODEL ORC11

The specifications of this product and the contents of this Instruction Manual are subject to change without prior notice. Copyright© 2001 Kikusui Electronics Corporation All rights reserved. Printed in Japan.

Power Requirements of this Product.

Manual should be	nts of this product have been cle revised accordingly. d be applied to items indicated			peration					
	e ge of this product is to		e the product within this i	range only.					
☐ Input fuse The rating of the	nis product's input fuse is	A,	VAC, and	·					
	WAF	INING							
	To avoid electrical shock power cable or turn off th before attempting to check	e switch on	the switchboard						
	 Use a fuse element having a shape, rating, and characteristics suitable for this product. The use of a fuse with a different rating or one that short circuits the fuse holder may result in fire, electric shock, or irreparable damage. 								
☐ AC power of	cable								
The product is attach a power specified in the	s porvided with AC power call or plug or crimp-style termin e drawing. WAF	als to the cabl	e in accordance with the	no power plug ne wire colors					
•	The attachment of a powe must be carried out by qual	r plug or crim ified personne	p-style terminals el.						
Blue (I Brown (LIV	NEUTRAL) Yellow (GND)	White Black (LIV	or Green/Yellow (GND)						
Plugs	for USA	Plug	gs for Europe						
Kiku	ded by Kikusui agents sui agents can provide you with si urther information, contact your K		cable.						
☐ Anoth	er Cable)					

TABLE OF CONTENTS

		PAGE
1.	GENERAL	1
2.	SPECIFICATIONS	2
3.	PRECAUTIONS BEFORE USE	4
	3.1 Unpacking and Inspection	4
÷	3.2 Check of AC Line Voltage	4
•	3.3 Operating Environments	5
	3.4 Protection of Output Circuit	5
	3.5 Output Cable	5
	3.6 Note	5
4.	OPERATION METHOD	6
	4.1 Description of Front Panel Items	6
	4.2 Description of Rear Panel Items	8
	4.3 Operation Method	9
	4.3.1 Setting of Oscillating Frequency	9
	4.3.2 Output Waveform Selection	9
	4.3.3 Setting of Output Voltage	9

GENERAL

The RC Oscillator (Model ORCll) is incorporated with the various advantageous features as follows:

- (1) Wide frequency range (5 Hz 500 kHz): The oscillating frequency range is as wide as 5 Hz - 500 kHz. The frequency can be set with dial knobs of coarse/fine and push switches of 5-range.
- (2) Low distortion (0.002%, 1 kHz typical): The distortion factor of the sinusoidal wave signal within the range of 10 kHz - 20 kHz is not greater than 0.005%.
- (3) Direct reading of output voltage: The output voltage can be directly read. It can be delivered for a range of 0 dB (3.16 Vrms, output terminal open) to -79.9 dB in 0.1-dB steps quantitatively. The output voltage is stable with less temperature drift coefficient.
- (4) Flat output frequency vs voltage characteristics: The output frequency vs voltage characteristics is ± 0.2 dB or better for 5 Hz 20 kHz.
- (5) Sinusoidal wave or pulse wave: Either a sinusoidal wave or a pulse wave of output can be selected with a slide switch. For either type of output, the output voltage can be preset with an attenuator and the waveform can be deflected with the zero volt line as the center of deflection.
- (6) TTL OUT terminal provided: A TTL OUT terminal is provided on the rear panel of the oscillator. This terminal constantly delivers a pulse wave of 0 to +5 V which is synchronized with the main output. This terminal can be directly used as a digital signal source. Even when a frequency counter is connected to this terminal for frequency monitoring or it is used otherwise, the distortion factor or other characteristics of the main output is not adversely affected.

SPECIFICATIONS

90 - 110 V, 104 - 126 V, 194 - 236 V, 207 - 253 V, Power requirements:

(selectable with plug on the rear panel). 50/60

Hz AC. Approx. 9 VA

Weight: Approx. 3.5 kg

134 W × 180 H × 250 D mm Dimensions:

 $(5.28 \text{ W} \times 7.09 \text{ H} \times 9.84 \text{ D in.})$

140 W × 205 H × 300 D mm (Maximum dimensions):

(5.51 W × 8.07 H × 11.81 D in.)

5°C to 35°C (41°F to 95°F), 85% or less Ambient temperature:

Frequency ranges: 5 Hz - 500 kHz (in five ranges)

> 5 Hz - 50 Hz ×1:

×10: 50 Hz - 500 Hz

×100: 500 Hz - 5 kHz

×1k: 5 kHz - 50 kHz

×10k: 50 kHz - 500 kHz

 $\pm (3\% + 1 \text{ Hz})$ Frequency accuracy:

Output impedance: 600 Ω ±10%, unbalanced

10-dB step \times 7 Output attenuators:

1-dB step \times 9

0.1-dB step $\times 9$

Output terminal: BNC receptacle

Output waveform: Sinusoidal wave or pulse wave

Sinusoidal output

Maximum output 3.16 Vrms $\pm 5\%$ (with 0 dB = 3.16 Vrms (open end),

with VARIABLE vernier knob set to the CAL'D voltage:

position)

Vernier range: 0.3 dB or over (continuously-variable output

voltage range, with VARIABLE vernier knob)

Distortion factor: 10 Hz - 20 kHz: 0.005% or better

20 kHz - 50 kHz: 0.01% or better (except $\times 10$ k

range)

5 Hz - 500 kHz: 0.1% or better Pulse wave: $(600-\Omega \text{ load})$ Maximum output voltage: 4 Vp-p or over Rise time: 200 ns or faster (with output -30 dB or over) Overshoot: 5 % or less (with output -30 dB or over) Sag: 5 % or less (with output -30 dB or over, at 30 Hz) TTL output: (with BNC receptacle on rear panel) LO level: 0 - 0.5 V HI level: 4.5 V - 5.25 V 1 (TTL, 74 Series) Fanout: Accessories: Instruction Manual ----- 1

Output frequency vs voltage characteristics:

5 Hz - 20 kHz: ± 0.2 dB or better with reference to 1 kHz, 600 Ω resistive load, with maximum output voltage

Fuse (0.3 A) ----- 1

3. PRECAUTIONS BEFORE USE

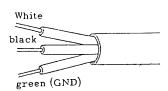
3.1 Unpacking and Inspection

The instrument is shipped after being fully inspected and tested at the factory. Upon receipt of the instrument, immediately unpack and inspect it for any signs of damage which might have been sustained when in transportation. If any damage is found, immediately notify the transportation company and/or your Kikusui agent.

3.2 Check of AC Line Voltage

The AC line voltage on which the instrument operates is selectable with the voltage selector plug on the rear panel, as shown in the below table. Before connecting the power cord of the instrument to an AC line outlet, make sure that the voltage selector plug is correctly set in the position corresponding to the AC line voltage. Normally, the instrument is shipped being set for line voltage 90 - 110 V and with fuse 0.5 A. Note that the instrument may not operate normally or may be damaged if it is operated on a wrong AC line voltage.

Selector plug Nominal Voltage Fuse setting voltage tolerance 100 V 90 - 110 V A 0.5 A 115 V 104 - 126 V В С 215 V 194 - 236 V 0.3 A D 230 V 207 - 253 V


Table 3-1

The power cord of the instrument has a 3P plug. To operate the instrument on a 2P receptacle which has no pin for the ground line, use the AC plug adaptor (3p-2p) which is supplied as an accessory item.

* Note that the use of the 3p-2p adaptor is limited to the 90 - 110 V range and 104 - 126 V range. The instrument casing can be grounded by connecting the ground wire of the adaptor to a ground line.

* The uncovered metallic terminal on the rear panel of the instrument also is a ground terminal. It is highly recommended to connect securely this terminal to a ground line before connecting the power cord to an AC line receptacle.

* Power Cable(3-core cable)

* Please be advised beforehand that the above matter may cause some alteration against explanation or circuit diagram in the instruction manual. Before using the instrument, it is requested to fix a suitable plug for the voltage used.

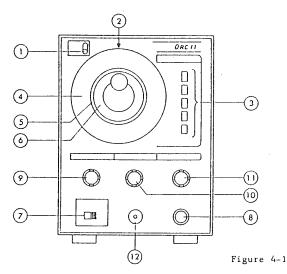
3.3 Operating Environments

Do not operate the instrument in direct sunlight or near a source of heat. Avoid operating the instrument in adverse environments such as dusty or corrosive gas atmosphere, chemical stains, mechanical vibration, etc. Note that the longevity of the instrument may be badly shortened if it is exposed to such adverse environments.

3.4 Protection of Output Circuit

Note that the instrument may be damaged if a voltage is applied to the output terminal of the instrument. Be sure to operate the instrument with no voltage applied to its output terminal.

3.5 Output Cable


The output cable should be short. If a long cable is used, the output voltage/frequency characteristics of sinusoidal wave and rise time characteristics of pulse wave may be degraded. Use an output cable as short as possible, to reduce stray capacitance.

3.6 Note

The specifications mentioned in this publication are subject to change without notice.

4. OPERATION METHOD

4.1 Description of Front Panel Items

POWER switch:

Main power switch

(2) [♥] indicator:

LED for power indication and for frequency dial index

(3) FREQUENCY (Hz)

[×1] - [×10k]

buttons:

To select an oscillating frequency range. The oscillating frequency is as indicated by the FREQUENCY dial and multiplied by the factor selected by one of these buttons.

4 FREQUENCY dial:

Continuously-variable adjustment of oscillating frequency, to a factor of 10 times.

(5) COARSE knob:

(6) FINE knob:

Knobs to drive the FREQUENCY dial. The outer knob is for coarse adjustment and the inner knob is for fine adjustment. The driving ratio is approximately 1:6.

7) WAVEFORM switch: $[\ \ \ \ \ \ \]$

To select either sinusoidal wave or pulse wave of output. Of either waveform, the signal is deflected with the zero-volt line as the center of deflection.

For continuously variable adjustment of the sinusoidal output voltage to a factor of approximately 0.5 dB. The output voltage decreases as this knob is turned counterclockwise. The clockwise extreme position (CAL'D position) is for the calibrated voltage of sinusoidal output signal.

OUTPUT (-dB):

Attenuator to adjust the output voltage of sinusoidal wave or pulse wave.

(9) [70] - [0]:

These rotary switches are for adjustment of

(10) [9] - [0]:

output voltage.

(11) [0.9] - [0]:

In the case of the sinusoidal wave output, the output is 3.16 Vrms (open end) when (8) is set at the CAL'D position and (9), (10) and (11) are set at 0 dB.

In the case of the pulse wave output, the output is approximately 10 Vp-p (open end) irrespective of setting of (8) when (9), (10) and (11) are set at 0 dB.

[A],[O],[O]

If rotary switch (9) is turned counterclock-wise further from the [70] position, the output is reduced to 80 dB, 90 dB in the medium frequency range (approximately 20 kHz), although the frequency vs voltage characteristics at the high frequency range are substantially shifted.

12 ΟυΤΡυΤ [600Ω] terminal:

The output terminal with output impedance 600 ohms. The GND line (outer conductor) is connected to the instrument chassis.

4.2 Description of Rear Panel Items

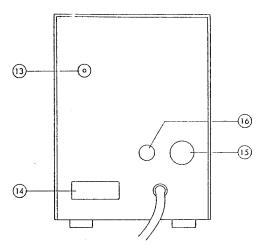


Figure 4-2

- (13) TTL OUT terminal: This terminal delivers a TTL-level pulse signal which is synchronized with the oscillating frequency of the instrument.

 This signal can drive one 74-series TTL gate (or four 74LS-series gates).
- AC line voltage To select the AC line voltage by setting the selector: arrowhead mark in the correct position.

Note: Be sure to disconnect the AC power cord from the AC line receptable before changing the position of the arrowhead mark.

(15) Fuse: AC input power fuse.

Note: Use the fuse corresponding to the AC line voltage. (See Table 3.1.)

(6) GND terminal: Ground terminal (connected to the instrument casing.)

- 8 -

4.3 Operation Method

4.3.1 Setting of Oscillating Frequency

Select the oscillating frequency with $\bigcirc 3$ FREQUENCY (Hz) buttons and $\bigcirc 4$ FREQUENCY dial. The oscillating frequency is as indicated by the dial and multiplied by the factor ([×1] - [×10k]) selected by the FREQUENCY (Hz) buttons.

Example: To select 20 kHz, proceed as follows:

- (1) Press the [xlk] button.
- (2) Set the FREQUENCY dial to the "20" position.

4.3.2 Output Waveform Selection

Select the sinusoidal wave or the pulse wave by throwing \bigcirc WAVEFORM switch to the \bigcirc or \bigcirc position.

4.3.3 Setting of Output Voltage

(1) Sinusoidal wave output:

The output voltage is adjustable with reference to 0 dB = 3.16 Vrms (open end) in 10-dB, 1-dB and 0.1-dB steps with 9, 10 and 10 rotary switches and with 10 VARIABLE potentiometer. The relationships between dB and voltage when the 10 VARIABLE potentiometer is set in the CAL'D position are shown in Table 4-1.

(2) Pulse wave output:

The 0 dB of the pulse wave output is approximately 10 Vp-p when open-ended or approximately 5 Vp-p when terminated with 600-ohm load. The relationships between dB values and peak voltage values are shown in Table 4-2. The values shown in the table are in percentage of the attenuated voltage with reference to the 0 dB as 100%.

		600 n			600 Ω			600 Ω			600 Ω
4 B	Open end	load	4 B	Open end	load	d B	Open end	load	d B	Open end	load
648	3.13 V 3.13 V	1.58 V 1.56 V 1.55 V	-1008	1.00 U ≎89 mA:	566 mV	-20dB	313 mV	158 mV 156 mV	-36dB	Vm 991 ∪m 9.8°	56.8 mV 49.4 nV
	3.85 U 3.85 U	1.55 V 1.53 V		977 mU 206 mU	489 mU 483 mV	İ	389 mU 385 mU	155 m∪ 153 πん		97.7 mV 95.5 mV	48.9 mV 48.3 mV
	3.82 V 2.99 V	1.51 U	1	955 mW 944 mW	477 mU 472 mU		382 mV	151 mV 149 mV	ļ	95.5 mV 94.4 mV	47.7 mV 47.2 mV
	2.95 V	1.48 V 1.43 V	l	933 mV 923 mV	457 mV 451 mV		295 m// 292 m//	148 mV		93.3 mV	46.7 mV 46.1 mV
	2.88 ∪	1.44 U 1.43 U		912 m∪ 982 m∪	454 mV		288 mJ 285 mJ	144 mV 143 mV		91.2 mV	45.6 mV
- 1 dB	2.82 U 2.82 U 2.79 U	1.41 U 1.39 U	-1108	991 mV 331 mV	451 mJ	-21d9	282 mV	141 mV	-31dB	90.2 mV 99.1 mV	45.1 mV 44.5 mV
	2.75 V	1.38 V 1.36 V		371 mW	441 mV 435 mV		279 mV 275 mV	139 m ⁽² 138 m ⁽²		98.1 mV 97.1 mV	44.1 m/ 43.5 m/
	2.72 V 2.69 V	1.35 V		851 mV 851 mV	430 mV 426 mV		272 mJ 269 mJ	136 mV 135 mV		85.1 mV 85.1 mV	43.6 mV 42.5 mV
	2.34 U 2.33 U	1.33 V 1.32 V	1	841 mV 832 mV	421 mV 416 mV		265 mU 263 mU	133 mV		84.1 mV 83.2 mV	42.1 mV 41.5 mV
	2.86 V 2.57 U	1.36 V 1.29 U 1.27 V	i	822 mV	411 m/J 466 m/J		26ê m∪ 257 m∪	136 m/J		52.2 m√ 91.3 m√	41.1 mV 48.6 mV
-269	2.54 V 2.51 V	1.23 V	-12aB	884 mV 794 mV	482 mV 397 mV	-22dE	254 mV 251 mV	127 mV 126 mV	~32d5	98.4 mU 79.4 mU	48.2 mV 39.7 mV
	2.48 V	1.24 V 1.23 V		785 mV 776 mV	393 mV	1230	248 mV 245 mV	124 mV 123 mV	1	78.5 mV 77.6 mV	39.3 mV 38.8 mV
	2.45 V 2.43 V 2.48 V	1.21 V 1.26 V		757 mV 759 mV	384 mV		243 mV 248 mV	121 m√ 120 m√		76.7 m∪	38.4 mV 37.9 mV
	2.37 V 2.34 V	1.19 U 1.17 U	i	758 m/J 741 m/J	375 mi		237 mW	119 00		75.9 mV 75.8 mV	37.5 m/J
	2.32 V	1.16 0	1	733 mU.	371 mV 366 mV	İ	232 mV	116 mV		74.1 mV 73.3 mV	37.1 m// 36.6 m/
	2.26 V	1.13 V 1.12 V		724 mV 716 mV	362 mV 358 mV		236 mV	115 m√ 113 m√	ļ	72.4 mV 71.6 mV	35.9 mV 35.8 mV
-308	2.24 V 2.21 V	1.11 U	-1368	766 m/J 766 m/J	354 mV 358 mV	-23dB	224 mV 221 mV	112 mV 111 mV	-3305	76.8 mV 76.6 mV 59.2 mV	25.4 mV 35.8 mV
	2.19 U 2.16 U	1.69 0	l	592 m√/ 584 m√/	346 mV 342 mJ	ł	219 mV 216 mV	189 mV		გ9.2 mV გ8.4 mV	34.6 mV 34.2 mV
	2.14 U 2.11 U	1.87 U		ತ7ದ ಗಾ∪ ತರಕ ಗಾ∪	338 mU 334 mV		214 m/J 211 m/J	187 mV		67.6 mV	33.8 mV. 33.4 mV
	2.89 U . 2.87 U	1.85 V 1.83 V	l	661 mV 653 mV	336 mV 327 mV	İ	289 mV 287 mV	164 m√ 163 m√		66.1 mV 65.3 mV	33.6 mV 32.7 mV
	2.64 U 2.62 U	1.82 V 1.81 V	ļ	ತಿತಿತಿ ಗಳು ತಿತಿಕಿ ಗಳು	323 m∨		284 mi/ 282 m//	182 m		54.6 mV	32.3 m√
-4¢B	2.88 V 1.97 V	1.88 U	-1406	431 mV	315 mV	-24dB	288 m/ 197 m/	181 mV 186 mV	-3408	33.8 mV 43.1 mV	31.9 mV 31.5 mV
	1.95 V 1.93 V	975 mU		517 mU	312 mV 388 mV	1	195 mV 193 mV	98.6 mV 97.5 mV		52.4 mV 51.7 mV	31.2 mV 30.8 mV
	1.61 V	964 mV 953 mV		518 MV	365 mV 361 mV		191 mV 185 mV	96.4 mU 95.3 mV	ļ	61.8 m√ 68.3 m√	36.5 mV 36.1 mV
	1.88 V	942 mV 931 mV		596 mV 589 mV	298 mV 294 mV		186 mV	94.2 m/J 93.1 m/J	1	59.6 mN 58.9 mN	29.5 m/J 29.4 m/J
	1.84 V 1.62 V	920 mV 918 mV	İ	582 mV 575 mV	291 mV 298 mV	-	184 mV	92.8 mV 91.8 mV	l	58.2 mV 57.5 mV	26.1 mV 25.8 mV
~5d5	1.88 V 1.78 V	899 mV	-1508	569 mW 563 mW	284 mU 281 mU	-25dB	180 mV 178 m/J	89.9 mV 88.9 mV	~35a6	56.9 mV 56.2 mV	28.4 mV 28.1 mV
	1.76 U 1.74 U	87° mV 839 mV	1	556 mV 558 mV	278 mU 275 mU		176 m// 174 m//	37.9 m/J 86.9 m/J		56.2 mV 55.6 mV 55.6 mV	27.8 mJ 27.5 mJ
	1.72 U 1.78 U	859 mV 849 mV	ŀ	543 mV 537 mV	272 mV 269 mV		172 m/J	85.9 mN 84.9 mN		54.3 mV 53.7 mV	27.2 mV 26.9 mV
	1.68 V	839 mV	ŀ	531 mV 525 mV	265 mV 262 mV		166 m/J	83.9 mV		53.1 mV 52.5 mV	26.2 mV
	1.64 V 1.62 V	826 mV 811 mV		519 mV 513 mV	259 mV		164 mV 162 mV	82.0 m√ 91.1 m√		5;.9 m∪	25.9 mV 25.6 mV
-6dB	1.38 V 1.58 V	262 mV 792 mV	-16dB	567 m/J 561 m/J	253 mV 251 mV	-26d£	Vm 951	86.2 mV		51.3 mW 58.7 mW	25.3 mV
	1.57 V 1.55 V	783 mV	1000	495 mV 498 mV	248 mU	1000	157 mV 155 mV	78.3 m/J 77.4 m/J	~36dE	56.1 mV	25.1 mV 24.8 mV
	1.53 Ŭ 1.51 V	766 mU 757 mU		484 mV	245 mV 242 mV		153 m√ :51 m√	76.6 mV		49.8 mU 48.4 mU	24.5 mV 24.2 mV
	1.56 ♥	748 mV ·		479 mV 473 mV	239 mV 237 mV		156 mV	74.8 mV		47.9 mU 47.3 mJ	23.9 mV 23.7 mV
	1.48 U 1.46 U	731 mV 723 mV		468 mV 462 mV	234 mV 231 mV	1	146 mV 145 mV	74.8 mV		46.€ mV 46.2 mV	23.4 m√ 23.1 m√
	1.45 U 1.43 U	714 mV		457 mV 452 mV	229 mV 226 mV	07.15	143 mU	72.3 mV 71.4 mV		45.7 mV 45.2 mV	22.4 mV 22.5 mV
-7d8	1.41 V 1.46 V	786 mV :	-1708	447 mV 442 mV	223 mV 221 mV	-27dB	141 mV 148 mV	78.6 mV 69.8 mV	~37dE	44.7 mV 44.2 mV	22.3 mU 22.1 mW
	1.38 U 1.36 U	682 mV		437 mU 432 mU	218 m/J 216 m/J		139 m/	49.8 mV 48.2 mV		43.7 mV 43.2 mV	21.8 mV 21.6 mV
	1.35 U 1.33 U	674 mV 667 mV		427 mV 422 mV	213 mN 211 πN		135 mV 133 mV	67.4 mV 66.7 mV		42.7 mV 42.2 mV	21.3 mV 21.1 mV
	1.32 V 1.30 V	659 mV 652 mV		417 m2 412 mV	28€ m∪		132 mV 138 mV	65.9 mN 65.2 mN		41.7 mV 41.2 mV	26.8 m∪
	1.29 U 1.27 U	644 mV 637 mV	ĺ	467 mU	283 mV 284 mV 381 mV		129 mV 127 mV	54.4 mV 53.7 mV		48.7 mV	28.4 nN
-868	1.24 U	529 mU 622 mU	- 1848	398 mV	199 mV	-3848	125 mN 124 mV	62.9 mV 62.2 mV	-35dB	39.8 ml)	20.1 mV
	1.23 V 1.22 V	Vm 21∂ Vm 88ò		394 mV 389 mV	197 mJ 195 mJ	1	123 mV	61.5 mU		39.4 mV 38.9 mV	19.7 mU 19.5 mU
	1.26 U	681 mV		385 mV 388 mV	192 m√ 196 m√		128 IIN	60.1 mV		38.5 mV 38.6 mV	19.2 mU 19.8 mV
	1.19 U 1.17 U	594 mV 587 mV 581 mV		376 mV 372 mV	183 mV		119 mV	59.4 mV		37.3 mソ 37.2 mル	18.8 mV Vm 3.31
	1.15 0	574 mV		363 mV	194 mV	}	115 my	58.1 mV 57.4 mV		36.7 mV 36.3 mV	18.4 mU 18.2 mU
-*68	1.14 V 1.12 V	548 mV 561 mV	-19dB	359 mV 355 mV	179 m/J 177 m/J	-29d8	114 mO 112 mA	55.5 mV 55.5 mV 55.5 mV	-39dB	35.7 mV 35.5 mV	17.9 m∪ 17.7 m∪
	1.11 0	555 m) 548 m)		351 mJ 347 mJ	175 mV		111 m/J	54.8 ㎡ノ		35.1 mt/ 34.7 m//	17.5 m∪ 17.3 m∪
	1.63 U 1.87 U	542 mi 536 mV		343 m/J 339 m/J	171 m/J		188 mル 167 mソ	54.2 mV 53.6 mV		34.3 mV 33.5 mV	17.1 m/J
	1.66 V 1.85 V	536 mV 524 m//		335 mV 331 mV	169 mV		166 mV	53.8 mV 52.4 mV		33.5 mV	16.9 m∪ 16.7 m∪
	1.04 V 1.02 V	518 mV 512 mV		327 m/J	165 m ^U		164 m/J 162 m/J	51.8 mV 51.2 mV		33.1 mV 32.7 mV	16.6 mV
	1.31 0	588 m/J		324 MV 328 MV	132 mV 166 mV	}	101 mV	50.6 m		32.4 m/J 32.6 m∪	16.2 mU 16.6 mV

d B	Open end	600 Ω load	d B	Open end	600 Ω load	d B	Open end	600 Ω load	dБ	Open end	600 Ω load
-46 dB	31.6 m/J	15.8 mV	-5608	16.6 mV	5.66 m'.'	-6606	3.16 mW	1.55 mV	-76dS	1.66 m/J	6.588 mA
	31.3 mV 36.9 mV	15.6 m//	1	9.89 mV 9.77 m/J	4.94 mW	1	3.13 mU 3.89 mW	1.56 m/J 1.55 m/J		6.989 mV 6.577 mV	Um P?P.8
	36.5 mN	15.3 mV		9.66 m/J 9.55 m/J	4.83 mW 4.78 mW		3.85 mV	1.53 mW:			6.483 mU
	36.2 mW 29.€ mW	14.9 113		9.44 mW	4.72 mN	1	3.62 mV 2.99 mV	1.49 mW:		E. 944 mJ	6 622 mU
	29.5 mV 29.2 mV	14.8 mV	1	9.33 mU 9.23 mU	4.67 mV 4.61 mV		2.95 mA' 2.92 mA'	1.46 mV		6.933 mU 6.923 mU	6.437 mV 6.461 mV
	28.5 mW	14.4 m√ 14.3 m√		9.12 mU 9.82 mU	4.56 mV 4.51 πN		2.85 mV 2.85 mV	1.44 mV 1.43 mV		6.912 mV	6.456 mU 6.451 mW
-4108	28.2 mV	14.1 mV 13.9 mV	-5168	6.91 m/J	4.45 mU	-61d6	2.82 mW	1.41 mV 1.39 mV	-71dE	6.891 mV	6.446 mV
	27.9 mV 27.5 πN	13.8 m/J		€.81 mV €.71 πV	4,41 mV 4,35 mV	l	2.79 mU 2.75 mU	1.38 m//		E. €.71 πN	を、441 mル を、435 mル
	27.2 mV 26.9 mV	13.6 mV		8.51 m// 8.51 m//	4.31 mV 4.26 mV	ĺ	2.72 ml/ 2.69 m/J	1.36 mV 1.35 mV			6.431 mV 6.426 mV
	26.6 mV 26.3 mV	13.3 m// 13.2 m//		8.41 mV 8.32 mV	4.21 mV 4.16 mV		2.63 mV 2.63 mV	1.33 mV 1.32 mV		6.641 mV 6.632 mV 6.832 mV	8.431 mg/
	26.6 mV 25.7 mV	13.6 mV 12.9 mV		8.22 mV 8.13 mV	4.11 my 4.66 my	l	2.66 mV 2.57 m/J	1.36 mV		6.832 mV 6.813 mV	
	25.4 mV	12.7 mV	-52dB	E.64 mU	4.62 mV		2.54 m/J	1.27 ㎡リ	20.46	6.864 m/J	8.482 mV
-42dB	25.1 mV 24.8 mV	12.6 mV	-3208	7.64 mV 7.85 mV	3.93 m/J	-6265	2.51 m/J 2.45 m/J	1.26 mU 1.24 mU	-72dE	6.785 mW	
	24.5 mW 24.3 mW	12.3 mV	l	7.76 mV 7.67 mV	3.88 mV 3.84 mV	İ	2.45 mW	1.23 mV 1.21 mV		6.767 mU	8.388 mV 8.364 mV
	24.6 m/J 23.7 m/J	12.6 m∪ 11.9 m∪	ł	7.59 mU 7.58 mU	3.79 mU 3.75 mU	ŀ	2.46 mJ 2.37 mJ	1.26 m/J			6.379 mU 6.375 mU
	23.4 mV	11.7 ₩		7.41 m/J	3.71 m∪		2.34 mV 2.32 mV	1.17 mV		6.741 mU	€.371 mV
	23.2 mV 22.5 mV	11.6 mV		7.33 mU 7.24 mV	3.66 mV 3.62 mV		2.29 πN	1.16 mV		6.733 mV 6.724 mV	6.362 m∪
-4308	22.6 mV 22.4 mV 22.1 mV	11.3 mV	-53dB	7.16 mU 7.88 mU	3.58 mV 3.54 mV	-6308	2.26 mV 2.24 mV	1.13 mW 1.12 mW	-?3d6	6.716 mV	6.254 mU
	22.1 mV 21.9 mV	11.1 m/ 10.9 m/		7.88 m// 6.92 m//	3.56 mV 3.46 mV		2.21 mV 2.19 mV	1.11 mW		6.766 mJ	6.356 mV 6.34c mV
	21.6 mV 21.4 mV	16.8 mV		6.84 m/J	3.42 mW	ł	2.16 mU 2.14 mV	1.68 m//		E 684 mU	5 365 mm
	21.1 mV	16.7 mU 16.6 mU	i	6.8 mV	3.36 mV 3.34 mV		2.11 mW	1.67 ml/ 1.66 ml/		6.626 mU	6.338 mV 8.334 mV
	26.9 mW	16.4 mi/ 16.3 m//	l	6.61 m// 6.53 m//	3.36 mV 3.27 mV	1	2.69 mU 2.67 mU	1.64 mV 1.63 mV		6.661 mA 6.653 mU	6.336 mU 6.327 mU
	26.4 m/ 26.2 m/	18.3 mV 16.1 mV		6.46 mW 6.38 mW	3.23 mV 3.15 mV	1	2.64 mV 2.62 mV	1.62 mV		€.646 m/.' €.639 mV	E.323 mM
-440E	26.6 mA 19.7 mV	16.6 ml.	-5408	6.31 mW 6.24 mW	3.15 mV 3.12 mV	~64dB	2.66 m/	1.66 mu	-7406	6.631 m/J	0.315 mV
	19.5 m/J 19.3 m/J	9.86 mV		6.17 nN	3.68 mV		1.95 m/J	8.986 mW 8.975 mW		6.617 mt/	6.368 mU
	19.1 mW	9.53 ml		6.16 mV	3.85 mV 3.81 mV	ļ		6.964 mW 6.953 mW		6.663 AN	6.365 mV 6.361 mV
	18.6 mV	9.42 mW 9.31 mW		5.96 m/s 5.89 m/s	2.98 mV 2.94 mV		1.86 mV	6.931 mV			6.2°4 ml
	18.4 m// 18.2 m//	9.26 m/. 9.16 m/J		5.82 mV 5.75 mV	2.91 mV 2.88 mV	ĺ	1.82 mV	6.926 mV		6.575 mW	6.299 mV
-45dF	18.6 mV 17.8 mV	8.99 m// 8.89 m//	-55d8	5.69 mU 5.63 mU	2.84 mW 2.81 mW	-65d9	1.50 m	Um 999.3	-75d£	8.569 m)	€.284 mV €.281 mV
	17.6 mU 17.4 mU	8.79 mJ 8.69 mJ	0000	5.56 mV 5.56 mV	2.78 nN		1.76 mV	€.889 m/. 6.879 m/.		P 556 mt/	6.278 nA
	17.2 m/J 17.6 m/J	8.59 mW		5.43 mW	2.75 mV 2.72 mV		1.72 mV	6.869 mV 6.859 mV		€.543 ਜ਼ੀ/	6.272 nW
	15.8 mJ	8.49 mJ 8.39 mJ		5.37 mV 5.31 mV	2.65 mV		1.68 m/J	6.64° m/) 6.839 m/)		t.531 m/	6.269 mU 6.265 mU
	16.6 mV	8.36 mV 8.26 mV		5.25 mV 5.19 mV	2.62 mV	l	1.64 mV	6.836 m//			6.242 mV
	16.2 mV 16.6 mV	6.11 m/J		5.13 mW 5.87 mW	2.56 mV 2.54 mV		1.22 11/2	ė.811 mW l		6.513 m/ 6.567 m/	6.256 mV 6.256 mV 6.254 mV 6.251 mV
-46dB	15.8 m/J 15.7 m/J	7.92 mV 7.83 mV	-5608	5.61 m// 4.95 m//	2.51 mV 2.48 mV	-66dB	1.58 m/	6.793 mV	-76ds		6.251 mU
	15.5 mル 15.3 mル	7.74 mU 7.66 mU		4. FE 1111	2.45 mV		1.55 mW	6.783 mU 8.774 m∪		6.496 mu	6.245 mV
	15.1 mV 15.8 mV	7.57 m/J		4.84 mU 4.79 m/J	2.42 mV 2.39 mV 2.37 mV		1.51 m/	6.76+ mU 6.757 mU		6.479 mil	6.242 mV 6.239 mV
	14.8 my	7.48 mV		4.73 m/J 4.68 m/J	2.34 mV		1.48 m√.	6.748 m/J 6.748 m/J		6.468 mM	€.237 mW €.234 mW
	14.5 077	7.31 m/J 7.23 m/J		4.62 mV 4.57 mU	2.31 mV 2.29 mV		1.46 mV 1.45 mV	6.731 mV 6.723 mV		6.457 nW	6.231 mV 6.239 mV
-47dB	14.3 m/J 14.1 m/J	7.14 mN 7.66 mV	-57d8	4.52 mU 4.47 mU	2.26 mV 2.23 mV	-67dB	1.43 mV	6.714 mV 6.766 mV	~22d6	8.452 mV	6.226 mV 6.223 mV
	14.6 mV 13.8 mV	6.98 mN		4.42 mW	2.21 mW		1.46 п⊘	6 A98 mal		6.442 my	6.221 mV 6.218 mV
	13.6 mV 13.5 mV	6.82 mV 6.74 mV		4.37 mV 4.32 mV	2.18 mV 2.16 mV		1.36 mV	6.682 mV		6.432 mV	8.216 nN
	13.3 mV 13.2 mV	6.67 mV		4.27 mV 4.22 mV	2.13 mリ 2.11 mル		1.33 mV	6.674 mU 8.667 mU		6.422 mV	8.213 mV 6.211 mV
	13.8 m/J	6.59 mV		4.17 m/J 4.12 m/J	2.66 mV 2.66 mV		1.36 mV	6.652 mV		6.412 m ⁽²⁾	6.208 mV 6.266 mV
	12.9 mV 12.7 mV	6.44 mu 6.37 mu		4.87 mW 4.83 mW	2.64 mV 2.61 mV		1.29 mV	6.644 mU 6.637 mJ		6.467 m∪	6.264 mV 6.261 mV
-45dE	12.6 mV 12.4 mV	6.29 mV 6.22 mV	-5606	3.98 mV 3.94 mV	1.99 mV 1.97 mV	-46d8	1.26 ml/ :	6.629 mV 6.622 mV	-78dE	6.398 mW	6.199 mW 6.197 mW
	12.3 mA/ 12.2 mA/	6.15 mV 6.68 mV		3.89 mW	1.95 mV		1.23 m ¹ /	6.688 mV		6.389 nV	6.195 mV
	12.6 mV 11.9 mV	6.61 m.		3.86 mW	1.92 mU 1.96 mU					6.388 aN	
	11.7 m/J	5.94 m/J 5.87 m/J		3.72 mU 3.72 mU	1.88 mV 1.86 mV		1.19 mU 1.17 mU			6.372 max	
	11.5 mW	5.81 m// 5.74 m//		3.67 mW 3.63 mW	1.84 mV		1.15 aA	6.526 1177		6.367 mV 6.363 mV	6.184 mW
-4°0B	11.4 m/J	5.68 m// 5.61 m/	-59dB	3.59 mV	1.79 mV	-4°08	1.17	ಆ.ಎಎ೫ <i>ಗಾ</i> ∨≀	-7945	6 350 mt.	6 179 ml
	11.1 mW 11.6 mW	5.55 mA 5.48 mV		3.55 mW 3.51 mW 3.47 mW	1.75 mV 1.73 mV		1.11 mV 1.16 mV	6.561 mV 6.555 mV 6.548 mV		8.355 mV 8.351 mV 6.347 mV	6.175 mV 6.173 mV
	16.8 m/J 16.7 m/J	5.42 mN 5.36 mV		3.43 mV	1.71 π₩		1.68 mV 1.67 mV	6.542 m/J 8.536 m/J		6.343 mV	6.171 mV
	16.6 m// 16.5 m//	5.36 m/ 5.24 m/		3.39 mV	1.69 mU 1.67 mU		1.66 m/0	6.536 n//l		6.335 m//	6.169 mV 6.157 mV
	16.4 mV	5.18 n//		3.31 m/J 3.27 m/J	1.64 mV		t 64 mal	6.524 mV 6.518 mV		6.331 m// 6.327 m//	6.166 mU 8.164 mU
	16.1 mV	5.12 mV 5.66 mV		3.24 mV 3.26 mV	1.62 mil		1.62 mV	6 510 601	•	6.324 nN	Um 851.8
						I		ŀ			

Table 4-2. dB values vs voltage values (Vp-p), pulse wave Relationships between dB and percentage of voltage with reference to 0 dB = 10 Vp-p (open end) or 0 dB = 5 Vp-p (600 \(\Omega \) load) as 100%

O to -79.9 dB (in O.1-dB steps) (calculative value) d B × d B x d E × d B X άB d B J B d B × 34 × 3.13 6 dB 188 -1848 31.6 - 26 dB 18.8 - 36 dB -48dB -58 dB 8.316 -66d8 8.188 -78dB 8.8316 31.3 38.9 36.5 36.2 98.9 97.7 9.89 8.989 8.8313 8.313 8.8989 8.8977 8,989 6,977 8,965 6,955 8,944 6.8389 6.8385 6.8383 6.8383 .369 97.7 95.5 95.4 96.3 91.2 98.9 9.66 9.55 9.44 9.33 9.23 6.8936 8.8955 8.6944 6.8933 ē.305 6.362 8.299 6.295 29.9 29.5 29.2 0.933 6.923 8.912 6.962 6.292 8.8923 0.6292 0.8255 23.9 . 12 2 . es 25.5 25.2 23.2 27.9 6.285 6.285 6.279 6.275 6.273 2.85 2.82 2.79 6.6962 6.6285 6.6282 69.1 88.1 87.1 - 1 dB -11dB -21dB έ 8.891 -71dB -3168 -51dB -61d8 8.8279 8.8275 6.8272 8.8249 8.81 8.71 0.0881 0.0871 27.5 27.2 26.9 2.79 2.75 2.72 2.69 2.66 86.1 85.1 8.61 8.51 8.41 6.861 6.851 8.841 . 6831 2.66 2.63 2.63 0.6651 84.1 26.5 8.8641 8.8832 8.6822 8.8813 8.244 8.243 8.8266 6.6263 83.2 82.2 6.832 8.622 .32 26.3 25.7 25.4 25.8 24.5 24.5 2.57 2.57 2.51 2.51 2.48 6.236 8.257 6.254 8.22 8.6246 8.6257 81.3 6.813 81.3 89.4 79.4 78.5 77.6 75.9 8.64 7.95 7.25 7.57 7.59 6.864 6.794 8.8564 8.8794 8.8254 8.8251 -205 -42dB -12d5 -22d8 -32d9 -52dB €.251 -62cB -72dB e.794 e.785 e.776 e.757 e.759 8.8785 6.6776 6.6747 6.8747 6.8759 8.8758 6.248 6.245 e.8248 2.48 2.45 2.43 2.46 2.37 2.34 6.243 8.248 8.237 8.234 8.8243 24.8 75.6 8.8237 8.8234 6.741 6.733 6.724 74.1 73.3 72.4 23.4 . 41 2.32 2.24 2.21 2.19 2.16 7.33 7.24 6.232 6.232 6.229 e.8232 e.8229 6.6733 22.9 e.8724 22.6 22.4 22.1 21.9 71.5 6.715 6.8224 . 16 8.8715 78.8 78.8 49.2 48.4 57.5 53.5 - 3d5 8.22219 2.22219 2.22219 8.22219 8.22219 8.22219 8.22219 - 13dB -23dB 7.88 7.86 -43dB 6.76B 6.786 -73d8 -63dB -33dB -53dB 8.6768 6.6221 6.6219 8.6766 ٤.۶2 8.692 6.8692 6.6664 21.6 6.64 8.684 21.1 21.1 20.9 .676 8.8214 8.6211 6.6676 2.11 2.69 2.67 2.64 8ه. 8.568 33.1 35.3 8.453 8.453 6.61 6.53 6.46 8.8441 e.6269 26.7 26.4 26.2 .646 64.6 e.284 6.282 6.6545 6.8638 0.6264 43.8 63.1 8.438 .e2 -24dB 8.631 8.631 8.624 8.617 -74dB 8.8286 8.8197 -448 -14dE 2.66 1.97 1.95 1.93 -44dB 8.8631 8.8624 E.8617 6.31 5.24 -34dB -5408 8.266 -64dB 62.4 įé 6.17 8.195 8.193 8.6195 19.3 19.1 6.616 61.8 66.3 59.6 58.9 58.2 57.5 52.9 8.6618 6.83 5.96 . 91 6.6191 8.596 8.589 8.582 s.a 5.96 5.89 1.66 £.188 18.6 1.86 8.184 6.6184 . 82 5.75 e.182 16.0 17.9 17.4 17.4 . 569 54.2 55.3 55.8 86 6.549 6.556 6.556 6.543 6.537 6.537 €.168 €.176 8.8168 -5dB 5.62 5.56 5.58 -45dB -1549 -25dB 1.7E 1.76 -35dB -55d5 -6545 -75dB 8.176 8.174 6.172 6.655è 6.6543 6.6537 54.3 53.7 53.1 5.43 1.72 8.8172 8.8176 6.178 5.31 5.25 5.19 ٠. غ 8.6531 8.6535 6.6519 8.6513 6.6567 1. 48 8.158 6.155 52.5 16.6 1.66 16.4 .519 51.3 50.7 50.1 49.5 49.8 8.154 6.513 8.567 6.561 5.13 5.67 8.152 16.6 15.8 15.7 15.5 1.58 1.58 1.57 1.55 1.53 6.166 6.158 6.157 6.155 8.6166 -608 -46dB -16dB 5.61 6.6581 6.6495 8.6498 -26dB -36dB - **á**ádB -76dB ~5&dB 8.495 8.498 6.6157 4.98 4.84 4.79 4.73 6.8155 4E.4 8.484 6.153 6.151 6.158 8.6484 8.6479 8.6473 15.1 15.6 8.479 47.3 6.473 8.468 1.56 46.8 46.2 45.7 4.68 4.62 4.57 4.52 14.8 8.148 8.8468 8.8148 14.6 8.462 8.457 1.46 8.146 8.145 e.6462 8.6457 45.2 6.452 6.447 6.6452 43 6.143 €.8143 -7dB -47d6 14.1 -17d8 -27dB -77dB -37dB - 67dB 44.2 . 41 8.447 8.442 6.437 6.432 6.427 8.427 -57dB 8.141 6.6141 4.42 4.37 4.32 6.6442 . 48 8.148 13.8 1.38 8.138 6.6138 43.2 6.8437 6.8432 6.8427 6.6422 6.6417 6.136 6.135 6.133 6.132 6.136 6.8136 6.8135 13.6 13.5 13.3 1.35 4.27 42.2 41.7 41.2 48.7 4.22 1.33 13.2 1.32 6.6132 6.6138 6.412 6.6412 6.6467 13.6 12.9 12.7 4.12 1.29 6.129 6.127 6.8129 46.3 e.4e3 6.8127 8.8126 6.6124 6.8123 4.83 6.6483 -9dB 12.6 12.4 12.3 12.2 3.98 e.398 e.394 - 18dB -28dB 1.24 -48dE -35d6 -58dB 6.125 6.124 - 58dE -28dB 39.4 6.6394 3.89 3.89 8.389 8.385 6.123 8.122 38.5 8.0385 6.0386 3.80 1.26 0.388 8.128 8.119 6.8128 37.6 37.2 33.7 6.374 6.372 6.367 3.76 6.8376 1.7 6.8372 6.8347 6.8343 6.8359 1.17 8.117 8.8117 11.6 11.5 11.4 1.16 8.116 36.3 35.9 35.5 3.63 3.59 3.55 3.51 3.47 6.359 6.8115 8.114 -÷48 8.355 8.351 - 19dB 11.2 -2946 -4908 -39dB 1.12 6.112 -6905 6.6355 -79dB .0112 -59dB 35.1 1.11 6.111 6.6111 0.347 8.116 6.8347 34.3 33.9 33.5 0.343 6.339 6.335 16.9 16.7 3.43 3.39 8.165 1.68 8.6343 6.6168 6.6339 6.6335 6.6331 16.6 3.35 1.83 6.165 6.335 6.331 6.327 8.324 8.326 6.6186 33.1 32.7 3.31 16.4 16.2 1.84 8.184 6.182 6.6327 6.6324 6.6164 3.24 6.6326 0.0101